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The recent reformulation of the coupled-wave method by Lalanne and Morris [J. Opt. Soc. Am. A 13, 779
(1996)] and by Granet and Guizal [J. Opt. Soc. Am. A 13, 1019 (1996)], which dramatically improves the con-
vergence of the method for metallic gratings in TM polarization, is given a firm mathematical foundation in
this paper. The new formulation converges faster because it uniformly satisfies the boundary conditions in
the grating region, whereas the old formulations do so only nonuniformly. Mathematical theorems that gov-
ern the factorization of the Fourier coefficients of products of functions having jump discontinuities are given.
The results of this paper are applicable to any numerical work that requires the Fourier analysis of products
of discontinuous periodic functions. © 1996 Optical Society of America.
1. INTRODUCTION
The determination of the eigensolutions of Maxwell’s
equations in a periodic, piecewise-constant medium, as
shown in Fig. 1, is the most crucial step in the analysis of
surface-relief gratings by modal methods. Among the ex-
isting modal methods, the most popular one is the modal
method by Fourier expansion,1,2 commonly referred to as
the coupled-wave method (CWM). In the CWM, both the
electromagnetic fields and the permittivity function are
expanded into Fourier series, and thereby the boundary-
value problem is reduced to an algebraic eigenvalue prob-
lem. In an earlier paper3 Li and Haggans provided
strong numerical evidence to show that the CWM con-
verged slowly for metallic gratings in TM polarization.
The authors attributed the slow convergence of the CWM
to the slow convergence of the Fourier expansions. How-
ever, they also admitted that ‘‘the convergence-rate differ-
ence [between TE and TM] cannot be completely ex-
plained by such a simplistic convergence analysis of the
Fourier expansions’’ (p. 1188). Recently Lalanne and
Morris4 and Granet and Guizal5 numerically achieved
truly dramatic improvement in the convergence rate for
TM polarization by reformulating the algebraic eigen-
value problem of the CWM. Their work convincingly
proved that the cause of the slow convergence of the CWM
for TM polarization is not the use of the Fourier series but
the way in which the Fourier series of the permittivity
and the reciprocal permittivity functions are used.
Whenever a ( sign is used in this paper without the

summation range explicitly given, a sum from 2M toM is
understood. Similarly, a matrix without an indication of
its dimension is understood to be a (2M 1 1) 3 (2M
1 1) square matrix. The Gaussian system of units, the
coordinate system of Fig. 1, and the time dependence
exp(2ivt) are used.
In the old formulation,1,2 one solves the coupled first-

order differential system,
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or better yet, the equivalent second-order system
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Here, k0 is the vacuum wave number; m0 5 1; dmp is the
Kronecker symbol; en and (1/e)n are the Fourier coeffi-
cients of the permittivity and the reciprocal permittivity
functions, respectively; Exn and Hzn are the y-dependent
Fourier coefficients of the fields; and an 5 a0 1 nK, with
K 5 2p/d and a0 being the Floquet exponent. In the
new formulation,4,5 one solves the coupled first-order sys-
tem,
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or the second-order system,
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where vf b denotes the Toeplitz matrix generated by the
Fourier coefficients of f such that its (n, m) entry is
fn 2 m , and 21 denotes the matrix inverse. Thus the
only difference between the new and the old formulations
is the manner in which the permittivity function appears
in the equations: The new formulation uses v1/eb21 and
veb21 instead of veb and v1/eb, respectively. It should be
mentioned that there is another version of the old formu-
lation, recently presented by Moharam et al.,6 in which
the matrix v1/eb in Eq. (2) is replaced by veb21:
© 1996 Optical Society of America
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The close similarity in equation structure and the
striking difference in performance between the old and
the new formulations poses an intriguing question:
What is the fundamental difference between the two for-
mulations? The authors of Refs. 4 and 5 did not provide
any answer, although the former offered an ingenious
demonstration of the plausibility of the new formulation
in the quasi-static limit. They also did not say how they
discovered the new equations. Indeed, their discovery
appears empirical.
In this paper I show that the reason for the success of

the new formulation is that it uniformly preserves the
continuity of the appropriate field components across the
discontinuities of the permittivity function; by inference,
the old formulations do so only nonuniformly. I will pro-
vide the mathematical basis for the new formulation.
Furthermore, I will describe the correct procedures for
Fourier analyzing the electromagnetic-field components
in Maxwell’s equations such that the required field conti-
nuity is preserved across the discontinuities of the per-
mittivity function.
In Section 2 I give three mathematical theorems con-

cerning the Fourier factorization of a product of two peri-
odic functions. The contents of these theorems are
rather subtle, but they have extremely important impli-
cations to the theory of gratings. The proofs of the theo-
rems will not be given here because they are lengthy.
The reader who is interested in the proofs may refer to
Ref. 7. To help the reader better understand the abstract
mathematical results, some discussions and several
graphical illustrations are given in the latter part of Sec-
tion 2. The mathematical results of Section 2 are applied
to our grating problem in Section 3, where Eqs. (3) and (4)
are derived and Eqs. (1), (2), and (5) are proven to be in-
correct. The correct procedures for Fourier analyzing
Maxwell’s equations such that the field continuity is pre-
served are also established in Section 3. In Section 4 I
make some remarks on the results obtained from this re-
search.

2. STATEMENT AND ILLUSTRATION OF
THE MATHEMATICAL RESULTS
A. Notation and Statement of the Problem
Let P be the set of piecewise-continuous, piecewise-
smooth, bounded, periodic functions of x with period 2p.
For every f(x) P P and g(x) P P,

h~x ! 5 f~x !g~x ! (6)

Fig. 1. Periodic, piecewise-constant medium. The periodicity of
the permittivity is d, and its discontinuities are located at
x 5 6d1/2.
is obviously also in P. Let

Uf 5 $xjuf~xj 1 0 ! Þ f~xj 2 0 !, j 5 1, 2, . . . %
(7)

be the set of the abscissas of the discontinuities of f(x),
and let Ug be similarly defined for g(x). Then,

Ufg 5 Uf ù Ug (8)

is the set of the abscissas of the concurrent discontinuities
of f(x) and g(x). If h(x) is such that

h~xp 2 0 ! 5 h~xp 1 0 ! ~xp P Ufg!, (9)

f(x) and g(x) are said to have a pair of complementary
jumps at xp . In this case the discontinuity of h(x) at xp
is removable. The amount of discontinuity of f at xj will
be denoted by f̂ j ,

f̂ j 5 f~xj 1 0 ! 2 f~xj 2 0 !, (10)

and similarly the jump of g at xj by ĝ j . If we assign the
functional values of f(x), g(x), and h(x) at their respec-
tive discontinuities to be the arithmetic means of their
limiting values from the two sides of the discontinuities,
then these functions are represented everywhere by their
Fourier series. As in Section 1, a function name with a
subscript in lowercase letter is used to denote the complex
Fourier coefficients of the function. The term Fourier
factorization means the expression of h(x) or its Fourier
coefficients in terms of the Fourier coefficients of f(x) and
g(x).
For a large class of functions, including those in P, the

Fourier coefficients of h(x) can be obtained from the Fou-
rier coefficients of f(x) and g(x) by Laurent’s rule:8
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To be more precise, Eq. (12) should be understood in the
following sense:
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The above equation, in the way it is written, emphasizes
two important points. First, the two limits are indepen-
dent of each other and the inner limit is to be taken first.
Second, the upper and lower bounds in each sum should
tend to infinity simultaneously; in other words, the sums
converge in general only restrictedly.9

In solving a practical problem on a computer, the trun-
cation of the infinite series is inevitable. In this section
subscriptM or superscriptM enclosed in parentheses will
be used to denote the symmetrically truncated partial
sums. Then, corresponding to Eqs. (11) and (12), we
have
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Laurent’s rule: hn
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Note that in Eq. (15) the same positive integer M is used
both for the summation bounds and for the superscript of
the coefficients, which is the most commonly adopted
truncation convention in numerical analysis. This condi-
tion is of fundamental importance to the validity of the
theorems to be given below. What a practitioner hopes is
that h (M)(x) converges as M → ` and that

h ~`!~x ! 5 h~x !. (17)

Although the mathematical theory on the multiplication
of Fourier series is well developed,9 to the best of my
knowledge the special and practically important problem
that is posed by letting N and M in Eq. (13) tend to infin-
ity simultaneously has not been addressed in the litera-
ture.

B. Theorems of Fourier Factorization
Theorem 1. If f(x) P P and g(x) P P have no concur-

rent jump discontinuities and h n
(M) is given by Eq. (14),

then Eq. (17) is valid.
Theorem 2. If f(x) P P and g(x) P P have concurrent

jump discontinuities and h n
(M) is given by Eq. (14), then

h ~M !~x ! 5 hM~x ! 2 (
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where the term o(1) uniformly tends to zero, and
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Furthermore,

lim
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Theorem 3. Let S be a subinterval or a collection of
subintervals of [0, 2p), and S̄ be its complement (S or S̄
may be empty). We assume that f(x) Þ 0 and denote by
v1/f b (M) the symmetrically truncated Toeplitz matrix gen-
erated by the Fourier coefficients of 1/f. If all the discon-
tinuities of h(x) are removable and if f(x) satisfies either
one of the two following conditions: (a) Re [1/f] does not
change sign in [0, 2p), Re [1/f] Þ 0 in S, and Im [1/f] does
not change sign in S̄; (b) Im [1/f] does not change sign in
[0, 2p), Im [1/f] Þ 0 in S, and Re [1/f] does not change
sign in S̄—then Eq. (17) is valid provided that, instead of
Eq. (14), the inverse rule

Inverse Rule: hn
~M ! 5 (

m 5 2M

M V 1f B
nm

~M !21

gm (22)

is used in Eq. (15).

C. Discussion
In less formal language, theorem 1 says that if f and g
have no concurrent jumps, then the difference between
hM(x), the partial sum of the Fourier series that uses the
exact Fourier coefficients, and h (M)(x), the partial sum
that uses the approximate Fourier coefficients obtained
by the finite Laurent rule, vanishes everywhere as the or-
ders of the partial sums increase. Theorem 3 says that
the same is true if all the jumps of f and g are pairwise
complementary provided that, instead of Laurent’s rule,
the inverse multiplication rule is used. However, theo-
rem 2 says that if f and g have concurrent jumps and
Laurent’s rule is used, then the difference between the
two partial sums does not vanish everywhere; at the loca-
tions of the concurrent jumps, h (M)(x) refuses to converge
to hM(x).
As a manifestation of the nonconvergence of h (M)(x) to

hM(x) at xp P Ufg , the convergence of h
(M)(x) to hM(x)

in the neighborhood of xp is nonuniform. In other words,
for any e . 0, one cannot find an M* such that
uh (M)(x) 2 hM(x)u , e not only for all M . M* but also
for all x P (xp 2 d, xp) ø (xp , xp 1 d), where d . 0 is a
constant. From Eq. (18) the convergence of
h (M)(x) 2 hM(x) is equivalent to the convergence of
FM(x). The nonuniform convergence of FM(x) can be
easily seen because the sum of a uniformly convergent in-
finite series of continuous terms should be a continuous
function. Since F`(x) is discontinuous at x 5 0, the con-
vergence of FM(x) cannot be uniform in the neighborhood
of x 5 0.
The function FM(x) has many interesting properties.

Its limit as M → ` is p2/4 at x 5 0 and zero everywhere
else in [0, 2p). FM(x) is unique in the sense that if there
is another function, FM8 (x) that satisfies Eq. (18), then the
difference between FM(x) and FM8 (x) must converge uni-
formly to zero everywhere. A few graphs of FM(x) will
help the reader to see its general behavior. Figures 2(a),
2(b), and 2(c) are graphs of FM(x) in the neighborhood of
x 5 0 for M 5 10, 100, and 1000, respectively. Note
that although the same vertical scale is used in all three
graphs, the horizontal scales are different from one an-
other by a factor of 10. Although there are visible minor
differences between the two curves in Figs. 2(a) and 2(b),
no differences between Figs. 2(b) and 2(c) can be easily de-
tected. In other words, in the neighborhood of x 5 0, the
graph of FnM(x) is approximately the same as the graph
of FM(x) for sufficiently large M, if the scale of the hori-
zontal axis of the former is n times as large as that of the
latter. If we index the extrema of FM(x) from the origin
outward, not counting the central maximum, by 61,
62, . . . , with positive and negative signs for x . 0 and
x , 0, respectively, then these figures suggest that for an
extremum of fixed index, its function value tends to a con-
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stant but its position tends to x 5 0 asM → `. This ob-
servation is of course consistent with our earlier conclu-
sion that the convergence of FM(x) is nonuniform near
x 5 0.
From a graphical point of view, Eq. (18) of theorem 2

says that the graph of h (M)(x) can be obtained by super-
imposing a series of properly scaled graphs of FM(x) cen-
tered at xp P Ufg on top of the graph of hM(x). Here for
ease of visualization we may assume that both f(x) and
g(x) are real-valued functions. The effect of such a su-
perposition is most prominent when h(x) is continuous.
In that case, h (M)(x) will have an overshoot (if f̂pĝp , 0)
or an undershoot (if f̂pĝp . 0) from the graph of hM(x) at
xp P Ufg , whose magnitude tends to 1/8 of u f̂pĝpu as
M → `. On the other hand, theorem 3 says that when
h(x) is continuous, h (M)(x) calculated by the inverse
rule preserves well the characteristics of h(x), including
its continuity at xp P Ufg . If we set

Fig. 2. Graphs of FM(x) in the neighborhood of x 5 0 for (a)
M 5 10, (b) M 5 100, and (c) M 5 1000. Note the change of
scale for the horizontal axes.
f(xp 1 0)/f(xp 2 0) 5 a and again assume that h(x) is
continuous at xp P Ufg , then

f̂pĝp 5 2h~xp!
~1 2 a!2

a
. (23)

Thus the magnitude of the overshoot can be arbitrarily
large as a → 0 or a → 6`. As illustrations of what has
just been said, let us consider two graphical examples.
In the first example, we choose

f~x ! 5 5
a uxu ,

p

2

, , ~a Þ 0 !,

a
2

p

2
, uxu < p

(24)

and g(x) 5 1/f. Then it is obvious that the discontinui-
ties of f and g are pairwise complementary and h(x) 5 1.
Figure 3(a) shows what happens when the partial sum
h (M)(x) is computed with the coefficients h n

(M) given by
the finite Laurent rule. In this and the next example,
M 5 200. Figure 3(b) shows an enlarged view of the
same partial sum in the neighborhood of x 5 p/2. As
the theory predicted, it is just a graph of FM(x 2 p/2) su-
perimposed on hM(x) 5 1. The peak value of the over-
shoot is also as predicted because in this case
(21/8)f̂pĝp 5 1/16 5 0.0625. The straight horizontal

Fig. 3. (a) Graph of h (M)(x) that is Fourier factorized by the fi-
nite Laurent rule, with f(x) given by Eq. (24), g(x) 5 1/f(x), and
M 5 200. (b) Enlarged view of Fig. 3(a) in the neighborhood of
x 5 p/2. The straight horizontal line in Fig. 3(b) is obtained by
the inverse rule.
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line in Fig. 3(b) is h (M)(x) computed with h n
(M) given by

the inverse rule. The perfect preservation of the continu-
ity of h(x) at x 5 p/2 is evident.
Perhaps the above example, in which Eq. (22) gives the

exact Fourier coefficient of h(x), hn 5 dn0, is too special.
In the second example, we keep f(x) as given by Eq. (24)
but choose

g~x ! 5 5
bS 1 2

uxu
p D uxu ,

p

2

, , ~b Þ 0 !.

2bS 1 2
uxu
p D p

2
, uxu < p (25)

Thus the function h(x) is again continuous. In Fig. 4(a),
f(x), g(x), and h(x) are shown schematically in order of
decreasing line thickness. Here, a 5 6 and b 5 2. Fig-
ure 4(b) shows h (M)(x) in the region enclosed by the
dashed circle in Fig. 4(a). The oscillatory curve is ob-
tained by using Laurent’s rule, and the straight line is ob-
tained by using the inverse rule. Once again, the inverse
rule gives a perfect reconstruction of h(x), but Laurent’s
rule gives a reconstruction that suffers from overshoot
and ringing in the neighborhood of the complementary
discontinuity.
We say that a product f(x)g(x) can be Fourier factor-

ized only when Eq. (17) is valid everywhere. If the three

Fig. 4. (a) Schematic representations of functions f(x) and g(x)
in Eqs. (24) and (25) and their product h(x) in order of decreas-
ing line thickness. Here a 5 6 and b 5 2. (b) Function h (M)(x),
with M 5 200, in the neighborhood of x 5 p/2. The oscillatory
curve is obtained by Laurent’s rule, and the nonoscillatory line is
obtained by the inverse rule.
types of product that theorems 1, 3, and 2 are concerned
with are referred to as products of type 1, 2, and 3, respec-
tively, then from an operational point of view the three
theorems can be summarized as follows:

1. A product of type 1 (two piecewise-smooth,
bounded, periodic functions that have no concurrent jump
discontinuities) can be Fourier factorized by Laurent’s
rule.
2. A product of type 2 (two piecewise-smooth,

bounded, periodic functions that have only pairwise-
complementary jump discontinuities) cannot be Fourier
factorized by Laurent’s rule, but in most cases it can be
Fourier factorized by the inverse rule.
3. A product of type 3 (two piecewise-smooth,

bounded, periodic functions that have concurrent but not
complementary jump discontinuities) can be Fourier fac-
torized by neither Laurent’s rule nor the inverse rule.

3. APPLICATION TO THE GRATING
PROBLEM
Strictly speaking, a modal field in a periodic medium is
representable only by a pseudo-Fourier series, which dif-
fers from a Fourier series by the Floquet factor exp(ia0x).
It is easy to verify that the mathematical results of Sec-
tion 2 apply to pseudoperiodic functions as well, except for
a few changes in the terminology. Therefore for simplic-
ity I will use the term Fourier series in this section to re-
fer broadly to the pseudo-Fourier series of the fields and
the Fourier series of the permittivity. The piecewise
smoothness and boundedness of the functions required by
the theorems in Section 2 are guaranteed here by the
physics of the grating problem.
The x-dependent equations corresponding to Eqs. (1)–

(5) are

1
i
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Now a reader, well equipped with the mathematical
theory of Section 2, can immediately see why Eqs. (1), (2),
and (5) are incorrect and why Eqs. (3) and (4) are correct.
Let us look at the above three equations one by one.
On the basis of the physics, we know that the product

eEx in Eq. (26a) should be continuous in x. Since e is dis-
continuous at x 5 6d1/2, e and Ex must together have
two pairs of complementary jumps there. Equation (1a)
is incorrect because it derives from the use of Laurent’s
rule, which does not apply to a product of type 2. As a
result, the left-hand side of Eq. (1a) is the coefficient of a
uniformly convergent Fourier series, but the right-hand
side is the coefficient of a nonuniformly convergent trigo-
nometric series. The two series converge at different
rates to functions that are not equal everywhere. Hence
the required continuity of eEx is not uniformly preserved.
In contrast, Eq. (3a) can be derived by applying the in-
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verse rule to Eq. (26a). Both sides of Eq. (3a) tend to the
same mathematical quantity, and the continuity of eEx is
uniformly preserved.
The Fourier analysis of Eq. (26b) can be done similarly.

Here (1/e)(]Hz/]x) is a product of type 2. Equation (3b)
handles this product correctly, but Eq. (1b) does not. For
Eq. (27), the term involving (1/e)(]Hz/]x) should be
handled just as in Eq. (3b), of course. The entire right-
hand side of Eq. (27) should be viewed as the product of e
and the term in the square brackets. This product is
once again of type 2, because the left-hand side of Eq. (27)
is continuous with respect to x. It is incorrectly handled
by Eqs. (2) and (5) and correctly handled by Eq. (4). Note
that there is no ambiguity in the way that Eqs. (26) and
(27) can be Fourier analyzed. For example, if the right-
hand side of Eq. (27) is multiplied out to yield two or more
terms, then there will be terms that are products of type
3, which cannot be Fourier factored.
For the sake of completeness, I provide two more ex-

amples. For TE polarization, the z component of the
electric field obeys the Helmholtz equation:

2
]2Ez

]y2
5

]2Ez

]x2
1 m0k0

2eEz . (28)

Here the product eEz is type 1, so Laurent’s rule can be
applied, just as every author on this subject has done. In
the conical mount the x component of the electric field of
an H' mode (meaning the mode for which Hx 5 0) obeys
the equation

kz
2Ex 2

]2Ex

]y2
5
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]x F1e ]

]x
~eEx!G 1 m0k0

2eEx ,

(29)

where kz is the z component of the incident wave vector.
Based on either the physics or a mathematical analysis,
the products eEx and (1/e)[](eEx)/]x] must be continuous.
Therefore by the inverse rule, Eq. (29) becomes
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2Exn 1 (
m

~anve bnm
21 am

2 m0k0
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p
V 1e B
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21
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Equation (30) corresponds to Eq. (60) of Ref. 6, but here
the field continuities are well preserved.
On the basis of the above examples, the procedure for

Fourier analyzing Maxwell’s equations that contain a dis-
continuous permittivity function can be summarized as
follows:

1. From the basic Maxwell equations, derive the
coupled first-order equations or the second-order equation
in terms of the vector field component(s) of interest.
2. Arrange the resulting equation(s) in such a way

that the combinations of the permittivity function and the
field components form products of type 1 and type 2 only;
avoid type 3 products.
3. Substitute the Fourier coefficients for the field com-

ponents that are not multiplied or divided by the permit-
tivity function, and apply Laurent’s rule and the inverse
rule to the products of type 1 and 2, respectively.
4. DISCUSSION
My research into the fundamental reason for the success
of the new formulation discovered by the authors of Refs.
4 and 5 initially led me onto a path different from the one
that has been presented here. Since the convergence of
the CWM depends on the convergence of the solutions of
the algebraic eigenvalue problem, it is natural for some-
one to focus attention first on the coefficient matrices on
the right-hand side of Eqs. (1)–(5). After all, it is the
structure and composition of these matrices that deter-
mine the convergence rates. However, such an effort
seemed to be difficult and turned out to be unsuccessful
for me.
Looking at the problem from a different perspective led

to brighter prospects. On the basis of physical under-
standing and experience, we know that the difficulty of
the problem lies at the permittivity discontinuities. If
the solutions of the eigenvalue problem converge, they
must converge to the modal fields that, by definition, sat-
isfy the boundary conditions. If, in the construction of
the eigenvalue problem, no assurance of fast convergence
with satisfaction of the boundary conditions is provided,
then it would be hopeless to expect the solutions of the ei-
genvalue problem to converge rapidly. In this sense, the
new formulation provides a much better condition for the
convergence of the solutions than does the old formula-
tion.
The significance of this paper is by no means limited to

the CWM. In a broad sense, any numerical work that re-
quires the Fourier analysis of a product of discontinuous
periodic functions could benefit. In particular, this re-
search may have important implications for the classical
differential method for gratings.10 At first glance, it may
appear that the results here do not apply to the differen-
tial method when the grating profiles are not rectangular.
Indeed, as the differential method does not use the so-
called multilayer approximation, eEx and (1/e)(]Hz/]x)
are not continuous across the grating profile where the
surface normal is not in the x direction. However, since
the method relies on numerical integration, in the y direc-
tion, of the unknown field amplitudes, the permittivity is
assumed to be independent of y within each integration
step. Thus the multilayer approximation is implicitly
used. Therefore I expect that if Eqs. (4.30) and (4.31) of
Ref. 10 are replaced by Eqs. (3a) and (3b), respectively, of
this paper, the convergence of the differential method will
be improved.
I have successfully applied the theorems and proce-

dures developed in this paper to improve the convergence
of the coordinate transformation method of Chandezon
et al.11 in the case in which the grating profiles have
sharp edges. This result will be presented in a separate
publication.12

From Eq. (11), it follows that if e (x) Þ 0, then

(
l 5 2M

M

em2lS 1e D
l2n

5 dmn 1 Dmn , (31)

where

Dmn 5 (
ulu . M

em2lS 1e D
l2n

. (32)
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Thus, for discontinuous e (x), Dmn → 0 only if m and n
are such that (M 6 n) → ` and (M 6 m) → ` as
M → `. In other words, the matrix elements of Dmn in
the vicinity of the two ends of the main diagonal remain
finite as M → `. Therefore

ve b ~M !21 Þ V 1e B ~M !

, M → `. (33)

The incorrect assumption of equality between matrices
veb21 and v1/eb might have inadvertently played a positive
role in the discovery made by the authors of Refs. 4 and 5.
It might also be the reason that the authors of Ref. 6 de-
rived Eq. (5).
The work of Refs. 4 and 5 has clearly shown that the

improved convergence rate more than offsets the addi-
tional computational effort needed to invert the matrices
veb and v1/eb. Actually, because these matrices are of the
Toeplitz type, the extra work is minimal. There are effi-
cient numerical algorithms13 that can invert Toeplitz ma-
trices in O(M2) instead of O(M3) operations. Inciden-
tally, the inverse of a Toeplitz matrix is not necessarily a
Toeplitz matrix. This is why double indices nm, instead
of a single index n 2 m, have been used to denote the el-
ements of the inverse matrices in this paper.
The subject of this paper serves well to illustrate cer-

tain aspects of the relationship among physics, math-
ematics, and numerics. The physical laws certainly do
not insist that their mathematical expressions be held ev-
erywhere in the mathematical sense, nor do they require
uniform convergence, if infinite series are used in the ex-
pressions. From a mathematical point of view, both the
old and the new formulations of the CWM are rigorous be-
cause they are equal almost everywhere. However, the
mathematical difference between everywhere conver-
gence and almost-everywhere convergence and between
uniform convergence and nonuniform convergence makes
a world of difference in the numerical implementations,
as demonstrated by the numerical examples in Refs. 4
and 5.

5. CONCLUSION
The success of the new formulation of the coupled-wave
method (CWM) recently presented by Lalanne and
Morris4 and by Granet and Guizal5 is due to the fact that
it uniformly preserves the continuity of the electro-
magnetic-field quantities that should be continuous
across permittivity discontinuities. I have given two dif-
ferent rules for Fourier factorizing two different types of
products. Furthermore, I have described the procedures
for correctly converting Maxwell’s equations into linear
algebraic systems in discrete Fourier space. As a result,
the new formulation of the CWM is placed on a solid
mathematical foundation.
Fourier series have been used for a long time to repre-

sent the periodic, piecewise-constant permittivity func-
tion and its reciprocal in grating analysis. Ironically, the
mistake of using Laurent’s rule to factor the Fourier coef-
ficient of a product of functions with complementary
jumps has been made by every researcher who has used
these series expansions. The lesson learned from this re-
search is that, in converting Maxwell’s equations in spa-
tial variables to equations in the discrete Fourier space,
one cannot blindly substitute the Fourier series of every
term and every factor into the spatial equations; appro-
priate factorization rules must be applied when disconti-
nuities are present in the factors of the products.
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