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Highly improved convergence of the
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The coupled-wave method formulated by Moharam and Gaylord [J. Opt. Soc. Am. 73, 451 (1983)] is known
to be slowly converging, especially for TM polarization of metallic lamellar gratings. The slow convergence
rate has been analyzed in detail by Li and Haggans [J. Opt. Soc. Am. A 10, 1184 (1993)], who made clear that
special care must be taken when coupled-wave methods are used for TM polarization. By reformulating the
eigenproblem of the coupled-wave method, we provide numerical evidence and argue that highly improved
convergence rates similar to the TE polarization case can be obtained. The discussion includes both noncon-
ical and conical mountings.
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1. INTRODUCTION
In a recent publication Li and Haggans1 provided strong
numerical evidence that the rigorous coupled-wave analy-
sis (RCWA) formulated by Moharam and Gaylord2 con-
verges slowly for one-dimensional (1-D) metallic gratings
and TM polarization (magnetic-field vector parallel to the
grating vector). They argued that the slow convergence
is caused by the slowly convergent Fourier expansions for
the permittivity and the electromagnetic field inside the
grating. The RCWA computation is twofold. First, the
Fourier expansion of the field inside the grating provides
a system of differential equations. Then once the eigen-
values and the eigenvectors of this system are found, the
boundary conditions at the grating interfaces are matched
to compute the diffraction efficiencies. In this paper we
focus on the eigenproblem of 1-D gratings for TM polariza-
tion. By reformulating the eigenproblem, we report on
highly improved convergence rates even for highly conduc-
tive gratings. We also reveal that the slow convergence
is due not to the use of Fourier expansions but to an in-
adequate formulation of the conventional eigenproblem.

In Section 2 we review briefly the previous eigen-
problem formulations used in coupled-wave analysis for
nonconical mountings; these include the original formu-
lation provided in Ref. 2 and an updated formulation
by the same authors.3 In Section 3 we propose a new
formulation for the eigenproblem. This new formula-
tion can be straightforwardly extended to any modified
method4,5 that is based on a Fourier expansion of the
field in the grating. Section 4 provides numerical evi-
dence that the new formulation significantly improves
the convergence rate. Two examples showing the im-
proved convergence rate are provided. The first one is
taken from Ref. 6 in which Peng and Morris showed
0740-3232/96/040779-06$06.00
that a very large number of orders must be retained to
analyze accurately a wire-grid-polarizer problem. The
second example is taken from Ref. 1, in which poor and
oscillating convergence rates were observed with a highly
conductive grating. In Section 5 a simple intuitive ar-
gument is used to explain the observed improvement,
and in Section 6 the generalization to conical mounts
is briefly derived. Concluding remarks are given in
Section 7.

2. CONVENTIONAL EIGENPROBLEM
Let us consider a 1-D periodic structure along the x axis
with an arbitrary permittivity profile esxd (see Fig. 1).
The z axis is perpendicular to the grating boundaries.
The diffraction problem is invariant in the y direction.
Magnetic effects are not considered in this paper, and
the constant m0 denotes the permeability of the periodic
structure. e0 is the permittivity of the vacuum. The
period of the structure is denoted by L, and the length
of the grating vector K is equal to 2pyL. An incident
plane wave with wavelength l in the incident medium
makes an angle u with the z direction in a nonconical
mounting. We denote the magnitude of the wave vector
of the incident wave by k sk ­ 2pyld, b sb ­ k sin ud
is its x component, and k0 represents the magnitude of
the incident plane-wave vector in a vacuum. A temporal
dependence of expsivtd of the wave is assumed s j2 ­ 21d.
em denotes the mth Fourier coefficient of esxdye0, and am

is used to denote the mth Fourier coefficients of e0yesxd.
Using the Floquet theorem, the x component Ex and

the z component Ez of the electric field and the y com-
ponent Hy of the magnetic field inside the grating can be
expressed as2
 1996 Optical Society of America
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Fig. 1. Geometry for the nonconical grating diffraction problem
analyzed in Sections 2 and 3 for TM polarization.
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Maxwell’s curl equations are
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­ 2jveEx , (2b)

1
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­ jvEz . (2c)

In the following equations we denote the first derivative in
the z variable by a prime. Consistently a double prime
denotes the second derivative. Identified in the quasi-
plane-wave basis, Eqs. (1) and (2) are used to obtain

2jsmK 1 bdfm 1 Sm
0 ­ 2jk0Um, (3a)

Um
0 ­ 2jk0

P
p

em2pSp , (3b)

P
p

s pK 1 bdam2pUp ­ k0fm . (3c)

By substituting fm from Eq. (3c) into Eq. (3a), we obtain2

Sm
0 ­ 2jk0Um 1 j smKyk0 1 byk0d

P
p

spK 1 bdam2pUp .

(4)

Equations (3b) and (4) provide a complete set of first-order
differential equations and constitute an eigenproblem of
size 2s2M 1 1d when 6M orders are retained in the com-
putation. As was noted by Li and Haggans1 and was sys-
tematically exploited by Peng and Morris6 and Moharam
et al.,3 it can be an advantage to solve the set of second-
order differential equations. This solution easily takes
into account the double degeneracy of the eigenproblem
and decreases the computational effort. Using Eqs. (3b)
and (4) we obtain the infinite set of second-order differen-
tial equations for the magnetic field:

Um
00 ­ 2k0

2 P
p

em2p

∑
Up 2 s pKyk0 1 byk0d

3
P
r

srKyk0 1 byk0dap2rUr

∏
. (5)
Except for minor notation disparities, Eqs. (3b) and (4)
were originally introduced by Moharam and Gaylord.2

Equation (5) can be found in Refs. 3 and 6. Equation
(5) can be written in the compact form

k0
22fU 00 g ­ fEsKxAKx 2 IdgfU g , (6a)

where I is the identity matrix, E is the matrix formed by
the permittivity harmonic coefficients, Kx is a diagonal
matrix with the i, i element being siK 1 bdyk0, and A is
the matrix formed by the inverse-permittivity harmonic
coefficients. Kx, E, and I are notations of Ref. 3. When
a finite number of orders are retained in the numerical
computation, the authors of Ref. 3 prefer to implement the
eigenproblem by numerically inverting matrix E instead
of directly taking the inverse-permittivity coefficients am.
Replacing A by E21 in Eq. (6a), we obtain

k0
22fU 00 g ­ fEsKxE21Kx 2 IdgfU g . (6b)

Equation (6b) is the same as Eqs. (35) and (36) of Ref. 3.
For the following comparison, the eigenproblem of
Eq. (6b) is used in the RCWA implementation.

3. REFORMULATION OF THE
EIGENPROBLEM
In this section we derive a new set of differential equa-
tions and reformulate the eigenproblem. Equations (3b)
and (3c) can be written as

2
P
p

am2pUp
0 ­ jk0Sm , (7a)

smK 1 bdUm ­ k0
P
p

em2pfp . (7b)

By substituting fm from Eq. (3a) into Eq. (7b) and then
eliminating Sm with Eq. (7a), we obtain another infinite
set of second-order differential equations:

smKyk0 1 byk0dUm 2
X
p

em2p

pKyk0 1 byk0
Up

­
1

k0
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X
l,p

em2pap2l

pKyk0 1 byk0
Ul

00. (8)

Note that Eq. (8) is not valid for normal incidence
sb ­ 0d and must be replaced by Eqs. (15) as dis-
cussed in Section 5. In a compact form, Eq. (8) becomes
k0

22fEKx
21AgfU 00 g ­ fKx 2 EKx

21gfU g, which is written
by multiplying both sides by sEKx

21Ad21:

k0
22fU 00 g ­ fA21sKxE21Kx 2 IdfU g , (9)

with E, Kx, A, and I being defined as in Eqs. (6a) and (6b).
Since A21 is identical to E when an infinite number of or-
ders are retained, Eqs. (6b) and (9) are fully equivalent.
As will be shown with numerical examples in the next
Section, and as will be argued in Section 5, this equiva-
lence is true only when an infinite number of orders is
retained. When truncating the matrices for simulation
purposes, we can see that the two eigenproblem formula-
tions provide highly different convergence-rates.
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Fig. 2. Diffraction efficiency of the transmitted zeroth order of
a metallic grating with TM polarized light. The solid curve is
obtained by using the conventional eigenproblem formulation of
Eq. (6b). The circles are provided by the new eigenproblem of
Eq. (9). The grating parameters and the geometry problem are
defined in Fig. 2 of Ref. 6.

4. NUMERICAL EXAMPLES
In our implementation of the new eigenproblem formu-
lation, we form matrices A and E by directly using the
analytical values of the harmonic coefficients em and am.
Matrices A and E are then inverted, and the eigenprob-
lem of Eq. (9) is solved with standard library programs.
When s2M 1 1d orders are retained in the computation,
we obtain s2M 1 1d eigenvectors ui and s2M 1 1d eigen-
values li

2. Using Eq. (7a), we derive the 2s2M 1 1d
eigenvectors f ui

liAui g and f ui
2liAui g with eigenvalues li and

2li, respectively. The first numerical example is related
to a metallic lamellar grating deposited on a glass sub-
strate, which acts as a polarizer in the visible region. It
was provided by Peng and Morris in Ref. 6. The lamellar
grating is composed of chrome (index of refraction equals
3.18– j4.41) and air and is acting as a zeroth-order filter
for normal incidence (see the caption of Fig. 2 in Ref. 6
for more details). Figure 2 shows the transmitted in-
tensity of the zeroth order as a function of the number
of retained orders. The solid curve is obtained by solv-
ing the eigenproblem of Eq. (6b). A detailed explanation
of the algorithm implementation can be found in Ref. 6.
Note that a slow and oscillating convergence is obtained.
The amplitude of the oscillations decreases as the num-
ber of retained orders increases. The circles are obtained
by solving the eigenproblem of Eq. (9). No oscillation is
observed. We are grateful to Mike Miller at the Insti-
tut d’Optique Théorique et Appliquée in Orsay, who com-
puted for us the zeroth-order transmitted diffraction effi-
ciency using his modal method.7 He found a transmitted
intensity of 70.28% when retaining 90 modes in his nu-
merical computation. If we consider that 70.28% is the
exact diffraction efficiency, it is clear from Fig. 2 that the
new eigenproblem formulation with as few as 20 retained
orders provides a more accurate result than the conven-
tional formulation with 400 retained orders.

The second numerical example is taken from Ref. 1,
where the convergence rate of a highly conductive grating
on gold substrate was investigated (see Fig. 1 in Ref. 1 for
additional details on the grating geometry). The diffrac-
tion configuration is a 30± incident angle, which cor-
responds to the first-order Bragg condition. Only the
negative first and zeroth reflected orders are propagat-
ing. Figure 3 shows the diffraction efficiencies of the
negative first and zeroth orders when the new eigen-
problem of Eq. (9) is used for the numerical computation.
As the same scale is used in Fig. 3 of this publication
and in Figs. 3(a) and 3(b) of Ref. 1, a visual compari-
son of the convergence rates can be made. It is obvious
that the convergence rate is drastically improved in that
particularly stringent example. For example, when 51
orders are retained for the computation, the conventional
eigenproblem provides diffraction efficiencies of 25% and
55% for the negative first and zeroth orders, respec-
tively. With the new formulation, the diffraction efficien-
cies are 10% and 84%. In Fig. 3 the numerical value of
the diffraction efficiencies obtained with 25, 51, 75, and
125 retained orders are given. They can be compared
with the exact values 84.843% and 10.162%, obtained by
Li and Haggans,1 when 125 modes are retained in the
modal decomposition of the field. When only 25 orders
are retained with the new eigenproblem, the diffraction-
efficiency differences between the modal method and the
new eigenproblem formulation are less than 0.009 for the
reflected zeroth order and 0.002 for the negative first
order (relative errors less than 1% and 2%, respectively).
We conclude that the new eigenproblem formulation pro-
vides highly improved convergence rates.

The improved convergence rates illustrated in Figs. 2
and 3 are not isolated cases. All our simulation results
show an improvement even for dielectric and nonlamel-
lar gratings and for small or large period-to-wavelength
ratios.

Fig. 3. Diffraction efficiencies of the reflected negative first and
zeroth orders of a metallic grating with TM polarization. The
circles are provided by the new eigenproblem method of Eq. (9).
The grating parameters and the geometry problem are defined
in Fig. 1 of Ref. 1. A direct comparison can be applied with
Figs. 3(a) and 3(b) of Ref. 1, where simulation results obtained
with the conventional eigenproblem and modal methods are
presented.
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5. INTERPRETATION
In this section we give a simple interpretation of the
convergence-rate differences between the conventional
and the new eigenproblem formulations. The interpre-
tation is given in the quasi-static limit, i.e., when the
period-to-wavelength ratio tends to zero. We show that,
with the conventional eigenproblem formulation, an ad-
equate description of the quasi-static limit requires that
an infinite number of orders be retained in the compu-
tation. We also show that, with the new eigenproblem
formulation, the quasi-static limit is accurately described
with a finite number of retained orders.

As was shown by Li and Haggans,1 the convergence
of RCWA is directly related to the convergence of the
eigensolution. Therefore any method to improve the
convergence of the eigenproblem should improve the con-
vergence of the diffraction efficiencies. Among the eigen-
values there is at least one that can be interpreted
physically. It takes advantage of the equivalence be-
tween gratings and homogeneous media in the quasi-
static limit. By quasi-static limit we mean situations
for which the grating period is infinitely small compared
with the wavelength. The equivalence was rigorously
derived by Bouchitte and Petit.8

For the sake of simplicity we restrict the discussion to
normal incidence. In the quasi-static limit and for TM
polarization, the grating is equivalent to a thin layer with
an effective relative permittivity equal to 1ya0, where a0

is the zeroth Fourier coefficient of e0yesxd. The field in
the grating can be written as a linear combination of two
counterpropagating plane waves, namely, exp jk0

p
1ya0 z

and exp 2jk0

p
1ya0 z. These two plane waves must be

solutions of Eqs. (5) and (8). So in the quasi-static limit,
2k0

2ya0 must be an eigenvalue of Eqs. (5) and (8). Let us
note Um

0 ­ 2jk0nUm and Sm
0 ­ 2jk0nSm, where 2k0

2n2

is the degenerated eigenvalue expected to be equal to
2k0

2ya0.
Let us first start with the conventional eigenproblem

formulation. In the quasi-static limit, i.e., when Kyk0

tends to infinity, Eq. (4) reduces to

nS s0d
0 ­ U s0d

0 , (10a)

; m fi 0,
P
p

pam2pU s0d
p ­ 0 , (10b)

where superscript (0) holds for the quasi-static notation
of the fields and b was taken equal to zero in Eq. (4).
If 6M orders are retained in the computation, Eq. (10b)
provides a homogeneous system of 2M linear equations
with 2M unknowns, U s0d

p with p fi 0. Except for a pos-
sible unexpected degeneracy, the solutions are zeros. So
in the quasistatic limit Eq. (3b) becomes

; m fi 0,
P

pfi0
em2pS s0d

p ­ 2emS s0d
o , (11a)

nU s0d
0 ­

P
pfi0

e2pS s0d
p 1 e0S s0d

0 . (11b)

Multiplying both sides of Eq. (11a) by a2m and then
summing over all m, we obtain

P
pfi0

√ P
mfi0

a2mem2p

!
S s0d

p ­ 2
P

mfi0
a2memS s0d

0 . (12a)
When an infinite number of orders is retained, becauseP
m a2mem2p ­ 0 as E and A are inverse matrices, the

left-hand side of Eq. (12a) reduces to 2a0
P

pfi0 e2pS s0d
p .

When we truncate the number of orders and retain 6M
orders in the computation, this is no longer true, and we
note the left side of Eq. (12a) 2a0

p P
pfi0 e2pS s0d

p . Simi-
larly, the right-hand side of Eq. (12a) can be written as
2s1 2 a0eodS s0d

0 when an infinite number of orders are re-
tained and is noted as 2s1 2 a0

#eodS s0d
0 during truncating.

So Eq. (12a) can be written as

2a0
p P

pfi0
e2pS s0d

p ­ 2s1 2 a0
#eodS s0d

0 . (12b)

In Eq. (12b), a0
p and a0

# denote two slightly different
values of a0, which depend on the truncation rank M .
a0

p and a0
# tend to a0 when the number of retained orders

tends to infinity. By eliminating
P

pfi0 e2pS s0d
p between

Eqs. (11b) and (12b), we obtain

a0
psnU s0d

0 2 e0S s0d
0 d ­ s1 2 a0

#eodS s0d
0 . (13)

Using Eq. (10a) to substitute S s0d
0 for U s0d

0 in Eq. (13), and
looking for a nonzero solution in S s0d

0 , we obtain

n2 ­
1

a0
p 1 e0

√
1 2

a0
#

a0
p

!
. (14)

Equation (14) shows that an infinite number of orders
must be retained for the numerical computation of the
exact eigenvalue 2k0

2n2 ­ 2k0
2ya0. The effect of the

truncation is not negligible. Figure 4 shows the real and
the imaginary parts of the absolute error e ­ n 2

p
1ya0

as a function of the number of retained orders. It was
obtained by solving the system of Eqs. (10) and (11) for the
problem of Fig. 2. The error e is quite large even when
200 orders are retained, especially for thick gratings for
which a small error on n is responsible for a large error on

Fig. 4. Effect of the truncation on the accuracy of the con-
ventional eigenproblem. The pluses and circles correspond to
the imaginary and the real parts, respectively, of the error
e ­ n 2

p
1ya0. The results are obtained by solving the system

of linear equations defined by Eqs. (10a) and (11).
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exps2jknzd when the boundary conditions at the grating
interface are being matched.

Let us now consider the quasi-static-limit situation
with the new eigenproblem formulation. For normal in-
cidence sb ­ 0d the system of second-order differential
equations given by Eq. (8) is not valid. This is because
f0 ­ 0 for normal incidence. It is easily shown that
Eq. (8) must be replaced by

; m fi 0, m
K2

k0
2

Um 2
X
pfi0

em2p

p
Up

­
X

pfi0,l

em2pap2l

pk0
2

Ul
00, (15a)

k0
2U0 1

X
p

a2pUp
00 ­ 0 . (15b)

Equations (15a) and (15b) constitute the set of second-
order differential equations for normal incidence. Pro-
ceeding to the quasi-static limit in Eq. (15a) results in
U s0d

m ­ 0 for any nonzero m. n2 then becomes 1ya0 in
Eq. (15b); this result holds for any number of retained
orders.

For nonnormal incidence, a similar argument can be
provided. The eigenvalue of the quasi-static limit must
be equal to 2k0

2ssin2 uye0 1 a0 cos2 ud21 instead of 2k0
2y

a0; this is because, in the quasi-static limit, the equiva-
lent homogeneous medium is uniaxial, with the optic axis
parallel to the x axis (see Ref. 8). The faster conver-
gence rate of the eigenvalue problem defined by Eq. (8)
was justified only in the quasi-static limit. For nonzero
period-to-wavelength ratios and for TM polarization, al-
though the eigenvalues are more difficult to interpret, it
is possible to derive an eigenvalue that approximately
satisfies the eigenproblem.9 This approximate solution
is expressed as a power series of Lyl. It is clear that
the power series’ zeroth order, which corresponds to the
quasi-static limit, is given by 2k0

2ya0. The result is that
the conventional eigenproblem formulation, which is able
to provide the zeroth-order term only when an infinite
number of orders are retained in the computation, is also
inadequate for accurately describing the eigenproblem of
gratings with nonzero period-to-wavelength ratios. Al-
though the derivation given in this section is restricted
to the quasi-static limit, we believe that it provides good
insight for understanding the improved convergence rates
for nonzero period-to-wavelength ratios.

6. GENERALIZATION TO
CONICAL MOUNTINGS
The new eigenproblem formulation can be generalized in
a straightforward way to the case of conical mountings.
We have to interpret the conical diffraction eigenproblem
as a combination of TE and TM polarization eigenprob-
lems, and we note that the conventional TE eigenproblem
formulation3 must not be changed since it provides good
convergence rates. Also note that the conventional for-
mulation for TE polarization, like the new formulation for
TM polarization, provides the adequate eigenvalue in the
quasi-static limit for any number of retained orders. Us-
ing strictly the notation of Ref. 3, it is then easily shown
that a useful eigenproblem formulation is
k0
21

266664
Sy

0

Sx
0

Uy
0

Ux
0

377775

­

266664
0 0 KyE21Kx I 2 KyE21Ky

0 0 KxE21Kx 2KxE21Ky

KxKy A21 2 Ky
2 0 0

Kx
2 2 E 2KxKy 0 0

377775

3

266664
Sy

Sx

Uy

Ux

377775 . (16)

In Eq. (16) Sx, Sy , Ux, Uy , Kx, Ky , E, and I are de-
fined as in Ref. 3. A denotes again the matrix formed
by the inverse-permittivity harmonic coefficients. The
only difference between the conventional formulation [see
Eq. (57) of Ref. 3] and the new formulation of Eq. (16)
is in the third row of the second column, where matrix
E 2 Ky

2 has been replaced by A21 2 Ky
2. In Fig. 5 the

diffraction efficiencies of the negative first and zeroth or-
ders of a conical mounting are shown as functions of the
number of retained orders. The grating used to obtain
the result in Fig. 5 is the same as that discussed in the
second example of Section 4 (see Fig. 1 of Ref. 1). The
diffraction configuration is a 30± angle of incidence, a 30±

azimuthal angle, and a 45± angle between the electric-
field vector and the plane of incidence. Using the nota-
tion of Ref. 3, u ­ 30±, f ­ 30±, and c ­ 45±. The solid
curves are obtained with the conventional formulation of
Eq. (57) in Ref. 3, and the dotted curves are obtained with
the new formulation of Eq. (16). As in the two examples
above we note that the new formulation provides faster
and smoother convergence rates. For example, for the
zeroth-order diffracted plane wave the numerical values
of the diffraction efficiencies are 10.58%, 10.11%, 10.08%,

Fig. 5. Diffraction efficiencies of the reflected negative first and
zeroth orders of a metallic grating for conical mount su ­ 30±,
f ­ 30±, and c ­ 45±d. The grating parameters are defined
in Fig. 1 of Ref. 1. The solid curves are obtained with the
conventional eigenproblem formulation of Ref. 3. The dotted
curves are obtained with the new formulation of Eq. (16).
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and 10.07% when 25, 51, 75, and 125 orders, respectively,
are retained with the new formulation. With the conven-
tional formulation the corresponding diffraction efficien-
cies are 1.38%, 7.70%, 8.99%, and 9.42%. We conclude
that the new formulation with 25 retained orders provides
more accurate results than the conventional formulation
with 125 retained orders. By use of the second derivative
of the field vector, the eigenproblem of Eq. (16) reduces to

k0
22fUx

00g ­ fKy
2 1 Kx

2 2 EgfUxg ,

k0
22fSx

00g ­ fKxE21KxA21 1 Ky
2 2 A21gfSxg . (17)

Equations (17) are new formulations of Eq. (60) in Ref. 3
and can be used to save computational time.

7. CONCLUSION AND DISCUSSION
By reformulating the eigenproblem of RCWA, we show
that good convergence rates can be achieved for TM po-
larization of 1-D metallic gratings. In Ref. 1, Li and
Haggans interpreted the oscillating and poor conver-
gence rates of conventional RCWA by invoking truncation
effects that are due to the slowly convergent Fourier
expansions of the permittivity and the field inside the
grating, but they noted that their interpretation poses
a difficulty in understanding why convergence rates are
much slower with TM than with TE polarization. Be-
cause the new eigenproblem is also based on a truncated
Fourier expansion of the permittivity, the poor conver-
gence rates observed for TM polarization must not be
attributed to truncation effects. In Section 5, by exam-
ining the eigenproblem in the quasi-static limit, we show
that the conventional eigenproblem requires an infinite
Fourier expansion to provide an accurate description of
the quasi-static limit diffraction problem; this can be
considered to be a kind of bad conditioning of the con-
ventional eigenproblem. However, as shown in Fig. 3,
the effect of the truncation remains slightly visible with
the new eigenproblem formulation. When the number
of retained orders increases from 25 to 125, the zeroth-
order diffraction efficiency keeps increasing from 83.96%
to 84.76% and is expected ultimately to reach the ap-
proximate value of 84.84%. This convergence rate is
similar to that observed for TE polarization of the same
grating problem. The approach developed in this paper
can be applied to any numerical techniques using a
Fourier expansion and is not restricted to the imple-
mentation of RCWA.
With respect to computational effort, the new eigen-
problem formulations of Eqs. (9) and (17) are more
demanding than their corresponding conventional formu-
lations [Eqs. (6b) and (60) of Ref. 3]. They additionally
require the numerical computation of matrices A and
A21. However, for a given reasonable accuracy, the new
eigenproblem formulation saves considerable time and
computer memory because fewer orders have to be re-
tained. This is especially true when continuous profile
gratings or stacks of lamellar gratings are considered
or when several grating depths are studied for a given
diffraction problem.
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